Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables

§ 5.3 Several Random Variables

§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Recall that if $X_{1}, X_{2}, \cdots, X_{n}$ are independent, then the joint pdf is the product of the respective pdf's (may not be identically distributed), namely,

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right) .
$$

If they follow the same distribution, then:

Definition 5.3-1 A random sample of size n refers a collection of independent and identically distributed (i.i.d.) random variables $X 1, \cdots, X_{n}$.

Example 5.3-1 Let X_{1} and X_{2} be independent Poisson random variables with respective means $\lambda_{1}=2$ and $\lambda_{2}=3$.
(a) Find $\mathbb{P}\left(X_{1}=3, X_{2}=5\right)$.

Example 5.3-1 Let X_{1} and X_{2} be independent Poisson random variables with respective means $\lambda_{1}=2$ and $\lambda_{2}=3$.
(b) Find $\mathbb{P}(X+Y=1)$.

Example 5.3-1 Let X_{1} and X_{2} be independent Poisson random variables with respective means $\lambda_{1}=2$ and $\lambda_{2}=3$.
(a) Find $\mathbb{P}\left(X_{1}=3, X_{2}=5\right)$.
(b) Find $\mathbb{P}(X+Y=1)$.

Ans. (a) 0.0182 (b) 0.0337

Example 5.3-2 An electronic device runs until one of its three components fails. The lifetime (in weeks), X_{1}, X_{2}, X_{3}, of these components are independent, and each has the Weibull pdf

$$
f(x)=\frac{2 x}{25} e^{-(x / 5)^{2}}, \quad 0<x<\infty
$$

Find the probability that the device stops running in the first three weeks.

Example 5.3-2 An electronic device runs until one of its three components fails. The lifetime (in weeks), X_{1}, X_{2}, X_{3}, of these components are independent, and each has the Weibull pdf

$$
f(x)=\frac{2 x}{25} e^{-(x / 5)^{2}}, \quad 0<x<\infty
$$

Find the probability that the device stops running in the first three weeks.
Ans. 0.660

Theorem 5.3-1 Say $X_{1}, X_{2}, \cdots, X_{n}$ are independent random variables and the random variables $Y=u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)$. If $\mathbb{E}\left[u_{i}\left(X_{i}\right)\right], i=1,2, \cdots, n$, exists, then

$$
\mathbb{E}(Y)=\mathbb{E}\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[u_{1}\left(X_{1}\right)\right] \mathbb{E}\left[u_{2}\left(X_{2}\right)\right] \cdots \mathbb{E}\left[u_{n}\left(X_{n}\right)\right]
$$

Theorem 5.3-2 Let $X_{1}, X_{2}, \cdots, X_{n}$ are independent random variables with respective means $\mu_{1}, \mu_{2} \cdots, \mu_{n}$ and variances $\sigma_{1}^{2}, \sigma_{1}^{2}, \cdots, \sigma_{n}^{2}$, then the mean and the variance of $Y=\sum_{i=1}^{n} a_{i} X_{i}$, where $a_{1}, a_{2}, \cdots, a_{n}$ are real constants, are, respectively,

$$
\mu_{Y}=\sum_{i=1}^{n} a_{i} \mu_{i} \quad \text { and } \quad \sigma_{Y}^{2}=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}
$$

Corollary 5.3-3 Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from the distribution with mean μ and variance σ^{2}. Then the mean of random sample

$$
\bar{X}:=\frac{X_{1}+X_{2}+\cdots+x_{n}}{n}
$$

has the mean and variance as follows:

$$
\mu_{\bar{X}}=\sum_{i=1}^{n}\left(\frac{1}{n}\right) \mu=\mu \quad \text { and } \quad \sigma_{\bar{X}}^{2}=\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2} \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

Example 5.3-3 Let X_{1} and X_{2} be a random sample of size $n=2$ from the exponential distribution with pdf $f(x)=2 e^{-2 x}, 0<x<\infty$.
(a) Find $\mathbb{P}\left(0.5<X_{1}<1.0,0.7<X_{2}<1.2\right)$.

Example 5.3-3 Let X_{1} and X_{2} be a random sample of size $n=2$ from the exponential distribution with pdf $f(x)=2 e^{-2 x}, 0<x<\infty$.
(b) Find $\mathbb{E}\left[X_{1}\left(X_{2}-0.5\right)^{2}\right]$.

Example 5.3-3 Let X_{1} and X_{2} be a random sample of size $n=2$ from the exponential distribution with pdf $f(x)=2 e^{-2 x}, 0<x<\infty$.
(a) Find $\mathbb{P}\left(0.5<X_{1}<1.0,0.7<X_{2}<1.2\right)$.
(b) Find $\mathbb{E}\left[X_{1}\left(X_{2}-0.5\right)^{2}\right]$.

Ans. (a) ... (b) ...

Example 5.3-4 Let X_{1}, X_{2}, X_{3} be three independent random variables with binomial distributions $b(4,1 / 2), b(6,1 / 3)$, and $b(12,1 / 6)$, respectively.
(a) Find $\mathbb{P}\left(X_{1}=2, X_{2}=2, X_{3}=5\right)$.

Example 5.3-4 Let X_{1}, X_{2}, X_{3} be three independent random variables with binomial distributions $b(4,1 / 2), b(6,1 / 3)$, and $b(12,1 / 6)$, respectively. (b) Find $\mathbb{E}\left(X_{1} X_{2} X_{3}\right)$.

Example 5.3-4 Let X_{1}, X_{2}, X_{3} be three independent random variables with binomial distributions $b(4,1 / 2), b(6,1 / 3)$, and $b(12,1 / 6)$, respectively. (c) Find the mean and the variance of $Y=X_{1}+X_{2}+X_{3}$.

Example 5.3-4 Let X_{1}, X_{2}, X_{3} be three independent random variables with binomial distributions $b(4,1 / 2), b(6,1 / 3)$, and $b(12,1 / 6)$, respectively.
(a) Find $\mathbb{P}\left(X_{1}=2, X_{2}=2, X_{3}=5\right)$.
(b) Find $\mathbb{E}\left(X_{1} X_{2} X_{3}\right)$.
(c) Find the mean and the variance of $Y=X_{1}+X_{2}+X_{3}$.

Ans. (a) ... (b) ... (c) ...

Example 5.3-5 Let X_{1}, X_{2}, X_{3} be independent random variables that represent lifetimes (in hours) of three key components of a device. Say their respective distributions are exponential with means 1000, 1500, and 2000. Let Y be the minimum of X_{1}, X_{2}, X_{3} and compute $\mathbb{P}(Y>1000)$.

Exercises from textbook: Section 5.3: 2, 3, 4, 6, 10, $17,19$.

